Os motores a pistão de quatro tempos, utilizados nas aeronaves leves atuais, foram inventados há 135 atrás, em 1876. Antes da introdução dos motores a reação, entre as décadas de 1940 e 1950, esses motores predominavam também na aviação militar e na aviação comercial.
Motor Continental IO-520 |
O motor ciclo Otto, de quatro tempos, em princípio, parece um verdadeiro trambolho tecnológico. Embora aperfeiçoado, é basicamente o mesmo motor de mais de um século atrás, mas continua a ser utilizado na grande maioria dos automóveis e aeronaves leves atuais. Por que?
Para utilização aeronáutica, o motor deve ter vários requisitos essenciais. Deve ser eficiente, de baixo custo, econômico em relação ao consumo de combustível e de despesas de manutenção, confiável, durável e capaz de produzir grande potência em relação ao seu peso.
No entanto, os motores a pistão não são, de forma alguma, máquinas eficientes, pois raramente conseguem converter mais de 25 por cento da energia contida no combustível em energia mecânica. Se comparado com um motor elétrico, por exemplo, que consegue converter quase 90 por cento da energia elétrica que consomem em energia mecânica, o motor a pistão é um grande desperdiçador de energia.
O motor a pistão funciona pela expansão dos gases produzidos na queima de um combustível, convertendo assim energia química em térmica, pela combustão, e energia térmica em energia mecânica, pela expansão dos gases.
Caso não houvesse perdas nesse processo, toda a energia química contida no combustível seria convertida em energia mecânica. Mas não é isso o que acontece. A potência que poderia ser obtida pelo motor, pela queima do combustível, sem nenhuma perda, é denominada potência teórica, e é impossível de se obter, na prática.
Para começar, nenhuma queima é realmente completa, algum combustível não queimado sempre vai restar nos gases de escapamento. Em segundo lugar, grande parte da energia térmica produzida pela queima simplesmente não vai ser convertida em energia mecânica. Por fim, grande parte da energia mecânica produzida vai ser novamente convertida em energia térmica pelo atrito interno no motor, ou consumida pelo próprio motor para acionar diversos acessórios, indispensáveis ao seu funcionamento.
A energia mecânica da expansão dos gases pode ser calculada, constituindo-se na chamada potência indicada. A fórmula simplificada para esse cálculo está abaixo:
Potência Indicada = (P x L x A x N x K)
33.000
Onde:
P = Pressão efetiva média indicada, em PSI;
L = Comprimento do curso do pistão, em pés ou fração;
A = Área da cabeça do pistão ou da seção reta do cilindro, em polegada quadrada;
N = Número de tempos de potência por minuto, ou seja, a RPM dividida por 2 (há um tempo motor a cada 2 voltas do eixo de manivelas);
K = Número de cilindros.
Na fórmula acima, a área do pistão multiplicada pela pressão efetiva média indicada dá a força, em libras-força, que é aplicada sobre o pistão que, multiplicada pelo curso, em pés, dá o trabalho desenvolvido em um tempo de potência, em libras.pé, o qual, por sua vez, multiplicado pelo número de tempos de potência em um minuto, nos dá a potência produzida pela expansão dos gases.
Motor Bristol Hydra, raro motor radial de 16 cilindros |
Uma vez que um HP é definido como sendo a potência produzida por 33.000 libras-pé por minuto, o total de libras.pé de trabalho produzido pelos cilindros do motor deve ser dividido por 33.000 para se obter a potência indicada, em HP.
Até aí, portanto, conseguimos obter a potência da conversão de energia térmica em mecânica dentro do motor. Sem contar que boa parte do combustível não foi queimada, temos que considerar que grande parte da energia térmica produzida não se converte em energia mecânica, e que mesmo a energia mecânica dos gases expandidos não é totalmente aproveitada. Daí, pode-se deduzir que grande parte da potência teórica, entre 40 e 45 por cento, será simplesmente jogada fora, através dos gases quentes do escapamento.
A potência indicada, por sua vez, também não é totalmente aproveitada, já que uma parte dela vai ser consumida para vencer os atritos internos e para acionar acessórios, como comandos de válvulas, bombas de óleo e de combustível, magnetos, geradores e outros dispositivos.
Motor Lycoming IO-540 |
A potência que se consegue obter no eixo da hélice, também conhecida como potência efetiva, é medidA experimentalmente por dispositivos denominados dinamômetros. Ao se usar um dinamômetro, se obtém o torque, uma grandez vetorial da física que significa uma força multiplicada pela braço de alavanca, para fazer girar um eixo. O cálculo da potência efetiva é então definido pela fórmula:
Potência Efetiva = 2 x π x Torque x RPM
33.000
Portanto, depois de se conhecer tais cálculos, pode-se imaginar meios de aumentar a potência, a economia, ou os dois fatores juntos, o que resultaria em melhor eficiência, uma tarefa nada fácil.
Na maior parte das vezes, aumentar a potência do motor vai resultar em maior consumo de combustível, o qual é desproporcional, resultando quase sempre em piora da eficiência à medida em que se aumenta a potência.
O principal fator determinante da potência, em um motor aeronáutico, é a cilindrada, que pode afetar nada menos que três variáveis da fórmula do cálculo da potência indicada (L, A, K). É um fator tão importante que a maioria dos motores aeronáuticos é designada por sua cilindrada, em polegadas cúbicas.
Motor Ranger L440, de seis cilindros |
Para aumentar a cilindrada, pode-se aumentar o diâmetro dos cilindros, aumentar o curso ou aumentar o número de cilindros. Qualquer um desses fatores, no entanto, tende a aumentar o peso e o tamanho do motor, ou a sua complexidade, caso se aumente o número de cilindros. Deve-se notar que cilindros pequenos são mais eficientes que os grandes.
Motor Pratt & Whitney R4360, de 28 cilindros |
Para se aumentar a pressão efetiva média, pode-se aumentar a taxa de compressão do motor que, no entanto, é limitada pela qualidade do combustível utilizado. Outra solução é aumentar a pressão de entrada, utilizando-se compressores (blowers) ou turbocompressores. Outra opção disponível é aumentar o número de válvulas, ou o tempo de abertura delas, para admitir mais ar dentro do motor. Essas soluções, no entanto, têm a tendência de reduzir o torque em baixas rotações, e pode tornar a marcha lenta do motor irregular, pela mistura entre gases de escapamento e ar/mistura de admissão.
A taxa de compressão, que resulta da razão entre o volume total do cilindro (cilindrada mais o volume da câmara de combustão, com o pistão no ponto morto alto), e o volume da câmara de combustão, no ponto morto alto, é um dos mais importantes fatores que influem tanto na potência produzida pelo motor quanto na eficiência da queima do combustível, e por consequência, na eficiência do motor em si. Todavia, a taxa de compressão é limitada pela qualidade do combustível utilizado pelo motor. Taxas de compressão muito elevadas acabam por provocar a detonação da mistura ar-combustível antes que a vela de ignição dê a faísca, e isso é altamente danoso para o motor: resulta não somente em perda de potência, mas também em sobrecarga de esforço nos pistões e superaquecimento da câmara, o que vai, invariavelmente, provocar danos ao motor. Pode-se usar combustíveis com melhor poder antidetonante, como gasolina aditivada com chumbo tetraetlila, ou etanol, mas, de qualquer forma, sempre vai haver um limite prático para a taxa de compressão do motor. Motores de ciclo diesel, que podem usar taxas de compressão muito mais altas, pois admitem apenas ar, são, em consequência, muito mais eficientes.
A taxa de compressão, que resulta da razão entre o volume total do cilindro (cilindrada mais o volume da câmara de combustão, com o pistão no ponto morto alto), e o volume da câmara de combustão, no ponto morto alto, é um dos mais importantes fatores que influem tanto na potência produzida pelo motor quanto na eficiência da queima do combustível, e por consequência, na eficiência do motor em si. Todavia, a taxa de compressão é limitada pela qualidade do combustível utilizado pelo motor. Taxas de compressão muito elevadas acabam por provocar a detonação da mistura ar-combustível antes que a vela de ignição dê a faísca, e isso é altamente danoso para o motor: resulta não somente em perda de potência, mas também em sobrecarga de esforço nos pistões e superaquecimento da câmara, o que vai, invariavelmente, provocar danos ao motor. Pode-se usar combustíveis com melhor poder antidetonante, como gasolina aditivada com chumbo tetraetlila, ou etanol, mas, de qualquer forma, sempre vai haver um limite prático para a taxa de compressão do motor. Motores de ciclo diesel, que podem usar taxas de compressão muito mais altas, pois admitem apenas ar, são, em consequência, muito mais eficientes.
Por fim, resta o recurso de aumentar a velocidade do motor, solução muito utilizada em motocicletas, por exemplo, mas que é inconveniente para os motores aeronáuticos, por necessitar de uma pesada caixa de redução para acionar a hélice, que tem limitações aerodinâmicas de velocidade.
Dentre as poucas soluções imaginadas para reduzir a perda de potência pelo escapamento, que drena mais de 40 por cento da potência que um motor poderia produzir, estão os "Turbo Compounds". Esses dispositivos consistem em turbinas, acionadas pelos gases do escapamento, que são acopladas ao eixo de manivelas por um conversor de torque hidráulico. Tal dispositivo pode realmente aumentar a potência do motor, sem aumentar o consumo de combustível, recuperando a potência perdida no escapamento.
Motor Wright R3350TC, com um dos Turbo Compound em primeiro plano |
Os Turbo-Compound, quando foram introduzidos nos motores aeronáuticos Wright R3350 TC, causaram muitos problemas, no entanto. Esses motores foram utilizados nos últimos grandes aviões comerciais de motor a pistão, os Lockheed Super Constellation e Douglas DC-7, mas a tecnologia de materiais da época não era adequada ao uso de tais dispositivos, que muitas vezes falhavam catastroficamente, geralmente por superaquecimento. Foram praticamente abandonados, em favor do uso de motores a reação, e só recentemente os Turbo Compound voltaram a ser utilizados, não em motores aeronáuticos, mas sim em motores a diesel de caminhão.
Para demonstrar as perdas de potência em um motor a pistão turbocomprimido, vamos utilizar como exemplo um dos mais eficientes motores já construídos, o Rolls-Royce Merlin da década de 1940. A despeito de ser antigo, tal motor é considerado muito eficiente até mesmo pelos padrões de hoje:
Motor Rolls-Royce Merlin |
Energia química do combustível (potência teórica): 5.410 HP;
Perdas:
1) Pelo escapamento: 2.790 HP (51,6%), sendo 2540 HP (47%) perdidos sob a forma de calor e energia mecânica, e 250 HP (4,6%) de energia química desperdiçada por produção de metano e monóxido de carbono pela combustão incompleta;
2) Perdas de calor da queima através do cilindro, absorvidas pelo sistema de refrigeração e pelo óleo, ou perdidas por irradiação direta: 660 HP (17,2%);
3) Potência absorvida pelo supercharger: 60 HP (1,1%);
4) Perdas mecânicas por atrito (reconversão de energia mecânica em térmica), ou para acionamento de acessórios: 300 HP (5,6%);
Potência efetiva, medida no eixo da hélice: 1.600 HP (29,6%)
A potência efetiva, ao se converter em tração, ainda sofre perdas, por atrito, viscosidade do ar e compressibilidade na hélice, equivalentes a cerca de 20 por cento da potência efetiva nas melhores hélices. No nosso exemplo, a potência útil ou tratora equivaleria a 1.280 HP.
Os cálculos acima foram feitos para a gasolina efetivamente queimada, não considerando, portanto, o combustível que entrou no motor e não foi consumido. Quando se usa mistura rica, há grande aumento de consumo, e mesmo com o uso de mistura pobre, uma certa quantidade de gasolina não será queimada.
Mesmo considerando a baixa eficiência dos motores a pistão, esses são bem mais eficientes que os motores a reação. Como os altamente eficientes, mas pesados, motores elétricos ainda não são praticáveis na aviação, exceto para algumas pesquisas experimentais, o motor a pistão ainda é a melhor opção para as aeronaves leves.
Vale dizer que os motores de ciclo Diesel são mais eficientes que os motores ciclo Otto, e devem ser uma boa opção para se equipar a aviação leve, no futuro próximo.
Ahn? Motores a pistão mais eficientes do que os a reação??
ResponderExcluirVeja esse Site ou direcione para o laboratório de motores.
Excluirhttp://calwatts.blogspot.com.br/
Motor DFCVCD
Promete mais eficiência na queima e na conversão em movimento.
É um motor a pistão que mistura motor a ar comprimido com vapor e injeção de combustível continuo, não acontece explosão e sim uma reação de combustão, isso permite queima mais lenta e completa do combustível em alta temperatura. A temperatura do gás de saída é baixa devido o aquecimento e evaporação de água dentro do circuito e por isso mais eficiente e elimina a perda de calor pelo radiador.
Sim, os motores a pistao são muito mais eficientes que os a reação. Basta comparar o consumo específico de cada motor. Mesmo o querosene tendo mais poder calorífico, seu consumo e maior nas turbinas. Quando usado em motores diesel. O consumo cai enormemente.
ExcluirLvcivs, exatamente. O motor a pistão consome muito menos combustível por expuxo gerado do que qualquer motor a reação. É certo que o motor a reação possui muitas vantagens, como maior simplicidade e melhor leveza, mas são menos eficientes, com certeza.
ResponderExcluirMais uma baaaaaaita aula!!!!
ResponderExcluirabç Prof Jonas
Olá, gostaria de fechar uma parceria com o meu blog ele é o TMA Londrina(http://aerolondrina.blogspot.com/), sou por enquanto amador, mas tento transmitir as novidades que acontecem no SBLO para as pessoas.
ResponderExcluirAbraços!
Parabéns !!
ResponderExcluirSou fã do blog. Visito toda semana, sempre a espera de um novo artigo.
Nardel.
OLA GRANDE JONAS!
ResponderExcluirCARA FIQUEI MUITO FELIZ POR SUA VISITA NO MEU BLOG!
SOU UM GRANDE FÃ DO SEU BLOG,E SUA RIQUEZA DE DETALHES NAS HISTORIAS QUE SÃO UMA GRANDE AULA A TODOS!
QUERIA FORMAR UMA PARCERIA COM VC, DESDE JÁ O SEU BLOG JÁ ESTÁ NA MINHA LISTA!!
ATT
AIRMGF
Olá!
ResponderExcluirexiste alguma classificação de modelos de aeronaves por tipo de motor? Por exemplo, CESSNA apresenta que tipos de motores? Caso exista essa classificação, onde encontro? Obrigada!
Gostaria de saber o que é preciso para construir um motor a pistão ?
ResponderExcluirJonas Liasch,
ResponderExcluirÉ sabido que o 'fan' no motor a reação é que gera a maior parte da potência deste motor ( 80% mais ou menos ). Tu saberias me dizer quanto, em torque e RPMs as turbinas precisam ter pra gerar potência pelos 'fans'?
Em um motor Rolls-Royce RB-211-535, usado nos Boeing 757, o fan gira a 4.000 RPM, o compressor intermediário a 7.000 e o compressor de alta a 10.000 RPM. Para calcular o torque, preciso dar uma pesquisada e levantar algumas variáveis que não tenho aqui.
ExcluirMuito Bom!!!
ResponderExcluirOlá Jonas! tenho uma dúvida! Qual motor e aeronave utiliza motor de partida de engrazamento direto? poderia me dar um exemplo? gratíssimo!
ResponderExcluirRafael, praticamente todos os motores atuais a pistão, horizontalmente opostos, usam arranque de engrazamento direto. Praticamente igual ao dos carros.
ResponderExcluir